

747008X

# High Speed Separation of Steroid Drug Cortisone Acetate utilizing Extreme High Pressure Liquid Chromatography System (X-LC<sup>®</sup>)

## Introduction

Cortisone acetate, a steroid, is administered to reduce tissue inflammation or to suppress the human immune system. The U.S. Pharmacopeia  $(USP)^{1}$  method requires that HPLC analysis of components of a cortisone acetate drug should have a resolution, R, between the analyte and internal standard peaks to be greater than 2.2 and the relative standard deviation for replicate injections to be not greater than 2.0%.

We examined the utility of an X-PressPak C18S column (2.1 mm I.D.  $\times$  50 mm L.) packed with 2  $\mu$ m diameter packing material for the ultra-high speed separation of the above steroid drug. The results were examined to determine whether the performance of the column and chromatography separation meets the USP requirements.

### Experimental

The chromatography system utilized in this experiment was a JASCO X-LC system consisting of a 3185PU HPLC pump, 3080DG degasser, 3067CO column oven, 3070UV UV/Vis detector, 3059AS auto sampler and a chromatography data system.

### **Results and Discussion**

Figure 1 shows the separation of a standard mixture of propyl paraben (0.03 mg/mL), butyl paraben (0.03 mg/mL) and cortisone acetate (0.1 mg/mL). The  $\lambda$ - $\ell$ C system provides an analysis time 4 times shorter than conventional HPLC while the resolution between the propyl paraben and cortisone acetate elutions was 12.2; the reproducibility of the peak ratio is 0.44%. These results well exceed the USP requirements for the analysis.



Figure 1 X-LC chromatogram of a standard mixture of propyl paraben, butyl paraben, and cortisone acetate Peak: 1=propyl paraben (0.03 mg/mL), 2=butyl paraben (0.03 mg/mL), 3=cortisone acetate (0.1 mg/mL) Chromatographic conditions: Column=X-PressPak C18S (2.1 mm I.D. x 50 mmL.), Mobile phase=CH<sub>3</sub>CN/H<sub>2</sub>O (35/65), Column temperature=25 °C, Flow rate=0.7 mL/min, Detection wavelength=254 nm, Injection volume=1  $\mu$ L

### References

1) US Pharmacopeia 29, 266 (2006)

copyright©JASCO Corporation